在task_master.py中修改如下:
- #!/user/bin/pytthon
- # -*- coding:utf-8 -*-
- # @Time: 2018/3/3 16:46
- # @Author: lichexo
- # @File: task_master.py
- # task_master.py
- import random,time,queue
- from multiprocessing.managers import BaseManager
- from multiprocessing import freeze_support
- task_queue = queue.Queue() # 发送使命的行列:
- result_queue = queue.Queue() # 吸取功效的行列:
- class QueueManager(BaseManager): # 从BaseManager担任的QueueManager:
- pass
- # windows下运行
- def return_task_queue():
- global task_queue
- return task_queue # 返回发送使命行列
- def return_result_queue ():
- global result_queue
- return result_queue # 返回吸取功效行列
- def test():
- # 把两个Queue都注册到收集上, callable参数关联了Queue工具,它们用来举办历程间通讯,互换工具
- #QueueManager.register('get_task_queue', callable=lambda: task_queue)
- #QueueManager.register('get_result_queue', callable=lambda: result_queue)
- QueueManager.register('get_task_queue', callable=return_task_queue)
- QueueManager.register('get_result_queue', callable=return_result_queue)
- # 绑定端口5000, 配置验证码'abc':
- #manager = QueueManager(address=('', 5000), authkey=b'abc')
- # windows必要写ip地点
- manager = QueueManager(address=('127.0.0.1', 5000), authkey=b'abc')
- manager.start() # 启动Queue:
- # 得到通过收集会见的Queue工具:
- task = manager.get_task_queue()
- result = manager.get_result_queue()
- for i in range(10): # 放几个使命进去:
- n = random.randint(0, 10000)
- print('Put task %d...' % n)
- task.put(n)
- # 从result行列读取功效:
- print('Try get results...')
- for i in range(10):
- # 这里加了非常捕捉
- try:
- r = result.get(timeout=5)
- print('Result: %s' % r)
- except queue.Empty:
- print('result queue is empty.')
- # 封锁:
- manager.shutdown()
- print('master exit.')
- if __name__=='__main__':
- freeze_support()
- print('start!')
- test()
(编辑:湖南网)
【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容!
|