加入收藏 | 设为首页 | 会员中心 | 我要投稿 湖南网 (https://www.hunanwang.cn/)- 科技、建站、经验、云计算、5G、大数据,站长网!
当前位置: 首页 > 业界 > 正文

详解Redis缓存击穿以及办理方案

发布时间:2018-11-12 20:52:07 所属栏目:业界 来源:智能运维小讲堂
导读:什么是缓存击穿 在评论缓存击穿之前,我们先往返想下从缓存中加载数据的逻辑,如下图所示: 因此,假如黑客每次存心查询一个在缓存内肯定不存在的数据,导致每次哀求都要去存储层去查询,这样缓存就失去了意义。假如在大流量下数据库也许挂掉。这就是缓存

假设,按照误判率,我们天生一个10位的bit数组,,以及2个hash函数((f_1,f_2)),如下图所示(天生的数组的位数和hash函数的数目,我们不消去体谅是怎样天生的,稀有学论文举办过专业的证明)。

详解Redis缓存击穿以及办理方案

假设输入荟萃为((N_1,N_2)),颠末计较(f_1(N_1))获得的数值得为2,(f_2(N_1))获得的数值为5,则将数组下标为2和下表为5的位置置为1,如下图所示:

详解Redis缓存击穿以及办理方案

同理,颠末计较(f_1(N_2))获得的数值得为3,(f_2(N_2))获得的数值为6,则将数组下标为3和下表为6的位置置为1,如下图所示:

详解Redis缓存击穿以及办理方案

这个时辰,我们有第三个数(N_3),我们判定(N_3)在不在荟萃((N_1,N_2))中,就举办(f_1(N_3),f_2(N_3))的计较

  • 若值刚巧都位于上图的赤色位置中,我们则以为,(N_3)在荟萃((N_1,N_2))中
  • 若值有一个不位于上图的赤色位置中,我们则以为,(N_3)不在荟萃((N_1,N_2))中

以上就是布隆过滤器的计较道理,下面我们举办机能测试,

(2) 机能测试

代码如下:

a. 新建一个maven工程,引入guava包

  1. <dependencies> 
  2. <dependency> 
  3. <groupId>com.google.guava</groupId> 
  4. <artifactId>guava</artifactId> 
  5. <version>22.0</version> 
  6. </dependency> 
  7. </dependencies> 

b. 测试一个元素是否属于一个百万元素荟萃所需耗时

  1. package bloomfilter; 
  2. import com.google.common.hash.BloomFilter; 
  3. import com.google.common.hash.Funnels; 
  4. import java.nio.charset.Charset; 
  5. public class Test { 
  6. private static int size = 1000000; 
  7. private static BloomFilter<Integer> bloomFilter =BloomFilter.create(Funnels.integerFunnel(), size); 
  8. public static void main(String[] args) { 
  9. for (int i = 0; i < size; i++) { 
  10. bloomFilter.put(i); 
  11. long startTime = System.nanoTime(); // 获取开始时刻 
  12. //判定这一百万个数中是否包括29999这个数 
  13. if (bloomFilter.mightContain(29999)) { 
  14. System.out.println("掷中了"); 
  15. long endTime = System.nanoTime(); // 获取竣事时刻 
  16. System.out.println("措施运行时刻: " + (endTime - startTime) + "纳秒"); 

输出如下所示:

  1. 掷中了 
  2. 措施运行时刻: 219386纳秒 

也就是说,判定一个数是否属于一个百万级此外荟萃,只要0.219ms就可以完成,机能极佳。

c. 误判率的一些观念

起首,我们先差池误判率做表现的配置,举办一个测试,代码如下所示:

  1. package bloomfilter; 
  2. import java.util.ArrayList; 
  3. import java.util.List; 
  4. import com.google.common.hash.BloomFilter; 
  5. import com.google.common.hash.Funnels; 
  6. public class Test { 
  7. private static int size = 1000000; 
  8. private static BloomFilter<Integer> bloomFilter =BloomFilter.create(Funnels.integerFunnel(), size); 
  9. public static void main(String[] args) { 
  10. for (int i = 0; i < size; i++) { 
  11. bloomFilter.put(i); 
  12. List<Integer> list = new ArrayList<Integer>(1000); 
  13. //存心取10000个不在过滤器里的值,看看有几多个会被以为在过滤器里 
  14. for (int i = size + 10000; i < size + 20000; i++) { 
  15. if (bloomFilter.mightContain(i)) { 
  16. list.add(i); 
  17. System.out.println("误判的数目:" + list.size()); 

输出功效如下:

  1. 误判对数目:330 

假如上述代码所示,我们存心取10000个不在过滤器里的值,却尚有330个被以为在过滤器里,这声名白误判率为0.03.即,在不做任何配置的环境下,默认的误判率为0.03。

(编辑:湖南网)

【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容!

热点阅读